FIRST TERM EXAMINATION, 2011–2012

MENTAL MATHEMATICS

Time Allowed : 15 min. CLASS–VII M.M. : 10

1. If $\triangle ABC \cong \triangle PQR$, the part of $\triangle PQR$ which corresponds to \overline{AC} is:
 (a) \overline{PQ}
 (b) \overline{QR}
 (c) \overline{PR}
 (d) $\angle P$

2. Express 8 cm in kilometre:
 (a) 0.00008 km
 (b) 0.008 km
 (c) 0.008 km
 (d) 0.08 km

3. A pair of integers whose difference is 2 is:
 (a) (-4) and (2)
 (b) (2) and (-4)
 (c) (-9) and (-7)
 (d) (-7) and (-9)

4. By applying SAS congruence rule, you want to establish that $\triangle PQR$ is congruent to $\triangle FED$. It is given that $PQ = FE$ and $RP = DF$. What additional information is needed to establish the congruence?
 (a) $QR = ED$
 (b) $\angle P = \angle F$
 (c) $\angle Q = \angle E$
 (d) $\angle R = \angle D$

5. The complement of the angle 72° is:
 (a) 108°
 (b) 8°
 (c) 72°
 (d) 18°

6. The standard form of $\frac{16}{-56}$ is:
 (a) $\frac{-8}{28}$
 (b) $\frac{2}{-7}$
 (c) $\frac{-4}{14}$
 (d) $\frac{-2}{7}$

7. Express $-\frac{64}{125}$ using exponential notation:
 (a) $\left(-\frac{4}{5}\right)^3$
 (b) $\left(-\frac{3}{5}\right)^3$
 (c) $\left(-\frac{4}{5}\right)$
 (d) $\left(-\frac{3}{5}\right)$
8. In the given figure, value of x is:

(a) 30° (b) 60° (c) 15° (d) 40°

9. If two adjacent angles are supplementary they form:
 (a) vertically opposite angles (b) equal angles
 (c) a linear pair (d) complementary angles

10. In the given figure triangles AOC and BOD are congruent by which rule:

 (a) SAS rule (b) SAS rule (c) ASA rule (d) RHS rule
First Term Examination, 2011-2012

Mathematics

Time Allowed: 2 hrs. 45 min. Class VII M.M.: 70

General Instructions:
1. All questions are compulsory.
2. Q. nos. 1-10 carry 2 marks each.
3. Q. nos. 11-20 carry 3 marks each.
4. Q. nos. 21-24 carry 5 marks each.

Section A

1. Find the value of the following, using suitable property:
 \[123 \times (-7) + (-123) \times 3\]

2. If one of the angles of the right-angled triangle is 58°. Find the other angle of the triangle.

3. Divide:
 \[\frac{13}{28} + \frac{19}{49}\]

4. Using the given figure, find \(x\).

5. Compare the following rational numbers:
 \[-\frac{4}{3} \quad \text{and} \quad \frac{5}{-6}\]

6. Find the product of the following:
 \[\frac{16}{-5} \times \frac{3}{8} \times \frac{10}{3}\]

7. Name four pairs of adjacent angles in the following figure:
8. Simplify and write the answer in exponential form:
 \[(2^3 \times 3^5) \times 5^8 \]

9. Draw rough sketches for the following:
 (i) In \(\triangle ABC \), \(BE \) is a median.
 (ii) In \(\triangle XYZ \), \(YL \) is an altitude in the exterior of the triangle.

10. Find the angle marked \(x \) in the following figure. Also name the property used.

![Diagram with angles 60°, 135°, and 80°, and angle \(x \)]

SECTION-B

11. Verify the property \(a \times (b + c) = (a \times b) + (a \times c) \) for \(a = -3 \), \(b = 7 \) and \(c = -9 \).

12. Seema purchased \(7\frac{1}{2} \) kg of rice at the rate of Rs. \(38\frac{3}{4} \) kg. How much money did she pay to the shopkeeper?

13. A car covers a distance of 89.1 km in 2.2 hours. What is the average distance covered by it in 1 hour?

14. Find the values of angles \(x \), \(y \), \(z \).

![Diagram with angles 40°, 25°, and 85°]

15. The three angles of a triangle are in the ratio 1:2:1. Find all the angles of the triangle. Also consider the triangle in two different ways.

16. In the given figure, \(DA \perp AB \), \(CB \perp AB \) and \(AC = BD \). Prove that \(\triangle ABC \cong \triangle BAD \). Also show that \(AD = BC \).

![Diagram with right angles and parallel lines]
17. (i) Represent $\frac{-7}{5}$ on a number line.

(ii) Add $\frac{-1}{12}$, $\frac{3}{8}$ and $\frac{-5}{6}$

18. (i) Evaluate: $5^0 + 3^0 - 8^0$

(ii) Express 3,430,000 in the standard form.

19. In the given figure, $AB = AC$ and AD is the median. Show that $\triangle ADB \cong \triangle ADC$ and $\angle B = \angle C$.

[Diagram of a triangle with medians]

20. Find x, if the angles of a triangle have measures $(x + 40^\circ)$, $(2x + 20^\circ)$ and $3x$. Also, state which type of triangle is this.

SECTION–C

21. (i) If $l \parallel m$, determine all the marked angles.

[Diagram with angles marked 32°, 1, 2, 3, and 4.]

(ii) In the given figure, $\angle 1 = 60^\circ$ and $\angle 2 = 120^\circ$. Check if lines l and m are parallel to each other.

[Diagram with angles marked 60°, 1, and 2, 120°.]

22. Simplify:

$\frac{12^4 \times 9^3 \times 4}{6^3 \times 3^2 \times 27}$

23. A 13 m long iron rod is placed against a wall. The distance of the foot of the iron rod from the wall is 5 m. How high up the wall does the iron rod reach?
24. (a) Is it possible to have a triangle whose sides have lengths 2 cm, 3 cm and 4 cm.

(b) In the given figure, AM is a median of a triangle ABC. Prove that $AB + BC + CA > 2AM$.